Structural characterization of proteins and complexes using small-angle X-ray solution scattering.

نویسندگان

  • Haydyn D T Mertens
  • Dmitri I Svergun
چکیده

Small-angle scattering of X-rays (SAXS) is an established method for the low-resolution structural characterization of biological macromolecules in solution. The technique provides three-dimensional low-resolution structures, using ab initio and rigid body modeling, and allow one to assess the oligomeric state of proteins and protein complexes. In addition, SAXS is a powerful tool for structure validation and the quantitative analysis of flexible systems, and is highly complementary to the high resolution methods of X-ray crystallography and NMR. At present, SAXS analysis methods have reached an advanced state, allowing for automated and rapid characterization of protein solutions in terms of low-resolution models, quaternary structure and oligomeric composition. In this communication, main approaches to the characterization of proteins and protein complexes using SAXS are reviewed. The tools for the analysis of proteins in solution are presented, and the impact that these tools have made in modern structural biology is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of X-ray and neutron scattering from biomacromolecular solutions.

New developments in small-angle X-ray and neutron scattering studies of biological macromolecules in solution are presented. Small-angle scattering is rapidly becoming a streamline tool in structural molecular biology providing unique information about overall structure and conformational changes of native individual proteins, functional complexes, flexible macromolecules and assembly processes.

متن کامل

Application of small angle X-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues

ABSTRACT Background: Coherent scattering leads to diffraction effects and especially constructive interferences. Theseinterferences carry some information about the molecular structure of the tissue. As breast cancer isthe most widespread cancer in women, this project evaluated the application of small angleX-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues....

متن کامل

A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.

Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible system...

متن کامل

Synthesis and Characterization of Highly Porous TiO2 Scaffolds for Bone Defects

The purpose of this study was to fabricate and investigate the highly porous structure using titanium dioxide, which is a candidate for bone defect repairing. For this purpose, TiO2 scaffolds were synthesized using titanium butoxide, Pluronic F127 surfactant, and polyurethane foam blocks. Therefore, a colloid includes titanium butoxide and F127 and the polyurethane foams were immersed in it. Th...

متن کامل

Structural investigation of complexes formed by DNA+CTAB and DNA+DDAB and Designing a method to increase salt ions between DNA and the Surfactant rods.

The internal structure of DNA-CTAB and DNA-DDAB is investigated by a Small Angel X- ray Scattering(SAXS) instrument. Hexagonal packing of DNA was observed for DNA complex with CTAB, and for DDABcomplex is observed lamellar structure. Variations in the internal spacing and degree of long-range ordering aredependent on both surfactant type and concentrations of added salt. When we increased the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of structural biology

دوره 172 1  شماره 

صفحات  -

تاریخ انتشار 2010